# REPRESENTING LIGHT IN THE DIGITAL REALM

Stelios Zerefos, Architect

Associate Professor, Hellenic Open University

## Use of light and shadow to communicate 3d space



## Use of light and shadow to communicate 3d space



## Use of light and shadow to communicate 3d space



# The architectural drawing





# The architectural drawing





# The architectural drawing







# Lighting design – thought of...



# Lighting design – thought of...



#### Post-war affluence



#### One Central Park – Jean Nouvel



# Beijing Olympic Stadium – Herzog & de Meuron



# Philarmonie d'Angers – Kengo Kuma



# National Library and Opera House – Renzo Piano



# left: rendering – right: photograph





#### "back of house"



#### "back of house"



#### "back of house"



## Representing lighting design

Lighting can be represented on a screen for conveying information on the:

quantitative characteristics of light (intensity, energy, decay, multiple sources etc.)

qualitative characteristics of light (position of source, shadows, color, projection)

#### quantitative

Help us to define numerical values on the effects of light on surfaces

Usually used to determine if lighting is appropriate for certain tasks

Can lead to optimizations for energy use and glare control



#### qualitative

Help us to define the aesthetic qualities of a space

Accurate projection of shadows provides more contrast information

Depiction of material textures and translucency inform us on the absolute behaviour of light on surfaces



#### 3d space

Cartesian coordinate system with three axes

The centre of the coordinate system is 0, 0, 0.

The position on each axis corresponds to 0

The position of any point is identified by three numbers (x, y, z) corresponding to the distance from each axis



### topology

Main topological characteristic is the point

Two connected points create one line

Three or more connected points form a surface

Five or more surfaces form an object



#### creation

Extrusion of a surface



#### creation

Boolean functions:

Union

Intersection

Deifference



#### creation

Boolean functions:

Union

Intersection

Deifference











# NURBS (Non Uniform Rational B-Spline)





# **Transformation**





# **Transformation**





# Parametric transformation (bend)





# Parametric transformation (twist)





# Parametric transformation (compress)





# What are we looking (c)at?



# orthographic projection

Quick way of understanding shapes

Can be used for measurements

Is not susceptible to distortion

Can perceive whole 3d objects



# perspective projection

Simulation of human vision

Cannot be used for measurements

Is susceptible to distortion

Can relate to human perception



### camera



## lens





## lens





## cone of vision



## hither



## hither



## cone of vision



## depth of field

#### Far focus



### Near focus



## exposure

F STOP 2.8



F STOP 5.6



# qualities of light



# intensity





## smoothness





## colour



# projection



# projection



### movement



# **BREAK!**

# sources of light



#### directional

Targeted light source

Simulation of the Sun rays

Even distribution



### directional

Targeted light source

Simulation of the Sun rays

Even distribution



#### omnidirectional

Non targeted light source

Simulation of the "light bulb"

Even distribution



#### omnidirectional

Non targeted light source

Simulation of the "light bulb"

Even distribution



### spotlight

Targeted light source

More control

Distance falloff and beam falloff

Unpredictable shadows



## spotlight

Targeted light source

More control

Distance falloff and beam falloff

Unpredictable shadows



### projector

Targeted light source

Ability to project images

Spotlight characteristics and controls



### linear

Non targeted light source

Uniform intensity across length

Very high computational needs



#### area

Targeted light source

Uniform intensity across area

High computational needs



## glowing object

Light emits threedimensionally from object

Extreme computational needs



### photometric

Accurate simulation of light sources and distribution

Used for measuring and validation of projects

Can simulate light bulbs and light fixtures



### photometric

Accurate simulation of light sources and distribution

Used for measuring and validation of projects

Can simulate light bulbs and light fixtures



#### **HDRI**

# (High Dynamic Range Image)

Replacement of the typical light source by an image

The image offers both information on light and on reflectance

32bit hdri compared to 8bit jpg means thousands of different white intensities!



### **HDRI**

(High Dynamic Range Image)



### **HDRI**

(High Dynamic Range Image)



#### **HDRI**

(High Dynamic Range Image)



# sunlight



# sunlight



#### location

Athens December 21 09:00



Wismar December 21 09:00



### time of day

Athens December 21 09:00



Athens December 21 13:00



# day of year

Athens December 21 17:00



Athens June 21 17:00



### interior effects

sunlight



daylight



### shadow



# defines spatial relationships



### defines spatial relationships



### defines characteristics of shape



### defines same colour objects



### defines same colour objects



### blends in with darkness



# ?-point lighting



# ?-point lighting



# ?-point lighting



### 3-point lighting



#### key light

Defines the position of the main lighting source

The most bright light source

Defines the colour and contrast of the shadows



#### fill light

Controls the quality of the shadows

Usually placed 90 degrees from the key light

Many fill lights can be used



#### back light

Provides visual depth

Defines the shape of objects by projecting light from the back



# 3-point lighting





# rendering algorithms



# Shadow mapping

Creates an image to display shadows

Quality depends on image size

Does not take into account material properties and cannot depict transparent shadows



#### raytracing

Follows the path from the light source to the object

Since the final result depends on sampling, quality depends on the number of rays calculated



#### raytracing

Takes into account material properties

Can reproduce shadows from transparent materials



#### reflectance

Can accurately depict the reflectance of the environment



#### refraction

Can calculate refraction qualities



# local vs global illumination





#### colour bleeding

#### radiance

Reflected light from a coloured surface transfers its colour to adjacent objects.

i.e. if white light hits a reflective red surface it will absorb the blue and green wavelengths and reflect the red one.

Light reflecting between objects of the same colour creates a very saturated effect



# ambient occlusion

Provides visual information on the occlusion of ambient lighting by the geometry of objects



#### caustics

Focused light by multiple reflections and refractions defined by the geometry of the transparent object



#### data visualisation



### false colour representation

Isolux lines



pseudocolour



### materials



### specular vs diffuse reflection



# transparency and refraction





# glow



# reflectivity



### texture



# color mapping



# bump mapping



# bump mapping



# specular mapping







# mapping techniques



# **UV** mapping





# THANK YOU FOR YOUR ATTENTION

Stelios Zerefos, Architect

Associate Professor, Hellenic Open University